Rohan Naidu (he/him)

website: rohannaidu.github.io email: rnaidu@mit.edu address: 37-685, 70 Vassar St., Cambridge, MA 02139, USA

Research Interests

first stars & galaxies, cosmic reionization, galaxy formation & evolution; Galactic archaeology, near-field cosmology, dark matter

EDUCATION

Harvard University, U.S.A., Ph.D. in Astronomy	2017 - 2022
Advisor: Prof. Charlie Conroy	
Thesis: The Milky Way – An Immigrant Story:	
Unraveling the Galactic Halo with the H3 Survey	
Yale-NUS College, Singapore, B.S. in Physical Sciences	2013-2017
magna cum laude, inaugural class of 150 of "Asia's first liberal arts college"	

Capstone Advisor: Prof. Pascal Oesch, Capstone: Insights into Cosmic Reionization

PROFESSIONAL APPOINTMENTS

NASA Hubble Fellow, Massachusetts Institute of Technology, U.S.A.	2022 - 2025
Pappalardo Fellow, Massachusetts Institute of Technology, U.S.A.	2025 - 2027

ACADEMIC HONORS

IOP Publishing Top Cited Paper Award $\times 3$ awarded annually to the "ten most cited papers published across the entire IOP Publishing journal portfolio (ApJ, ApJL, AJ) within the past 3 years"	2023, 2024
 Rapid Reionization by the Oligarchs: The Case for Massive, UV-Bright, Star-Forming Galaxies with High Escape Fractions, ApJ, 892, 109, 2020 [266 citations] 	
 Evidence from the H3 Survey that the Stellar Halo is Entirely Comprised of Substructure, ApJ, 901, 48, 2020 [310 citations] 	
– Two Remarkably Luminous Galaxy Candidates at $z\approx 10-12$ Revealed by JWST, Ap 14N, 2022 [365 citations]	pJ, 940L,
Fireman Prize, Astronomy Department, Harvard University awarded to a graduating student for "superlative work on their Ph.D. thesis"	2022

Certificate of Distinction in Teaching, Harvard University for a "special contribution to undergraduate teaching" based on student evaluations for courses taught during the pandemic

2021

Ashford Fellowship, Harvard University awarded to six incoming students who are "highly likely to make a substantial impact in their chosen field of study, as well as in society"	2017-2022
Peirce Fellowship, Astronomy Department, Harvard University awarded to 1-3 incoming graduate students who "possess significant promise as researchers"	2017-2020
Chambliss Astronomy Student Achievement Award, American Astronomical Society	2017
Outstanding Capstone Project in Physical Sciences, Yale-NUS College	2017

Select Observing Programs as Principal Investigator

Total funding from approved JWST and HST observing programs as PI: \$927,000 JWST, NIRSpec (co-PI with Seiji Fujimoto) 39 hours, 2025 Let There Be Light: Directly Witnessing the Birth of Metal-Free Pop III Stars in an Ultra-Faint Galaxy at z = 6.5JWST, NIRSpec (co-PI with Pascal Oesch) 33 hours, 2024-25 Mirage or Miracle? Spectroscopic Confirmation of Remarkably Luminous Galaxies at z > 10JWST, NIRSpec (co-PI with Christina Eilers, Jorryt Matthee, Fred Davies) 21 hours, 2025 MASQUERADE: Mapping a Super-luminous Quasar's Extended Radiative Emission JWST, NIRCam grism (co-PI with Jorryt Matthee) 47+29 hours, 2023 All the Little Things: Pop III Signatures & the Ionizing Budget of Dwarf Galaxies in the Epoch of Reionization JWST, NIRSpec (co-PI with Christina Eilers, Jorryt Matthee, Fred Davies) 21 hours, 2024 Mapping Quasar Light Echoes with Lyman-alpha Forest Tomography during the Epoch of Reionization JWST, NIRCam grism 7 hours, 2023 Where Cosmic Dawn Breaks First: Mapping the Primordial Overdensity Powering a $z \sim 9$ Ionized Bubble JWST, NIRCam grism (co-PI with Jorryt Matthee) 18 hours, 2023 Anatomy of an Ionized Bubble at z = 6.6: Which Galaxies Reionized the Universe? Hubble Space Telescope, WFC3/UVIS 5 orbits, 2018 Confirming Extreme Lyman Continuum Emission in a z = 3.27 Star-Forming Galaxy Magellan, MagE (co-PI with Vedant Chandra) 27 nights, 2022-To 100 kpc and Beyond: Bringing the Gaia Revolution to the Brink of the Galaxy Magellan, MIKE (co-PI with Alex Ji) 20 nights, 2021-23 Extending the Chemical Reach of the H3 Survey of the Galactic Halo

Magellan, FIRE	10 nights, 2019-20
Rest-UV Spectroscopy of Galaxies Reionizing the Universe at $z = 6 - 7$	
Magellan, IMACS	4 nights, 2018
A Ly α Survey to Harvest Lyman Continuum and Prepare for JWST	

Select Observing Programs as Co-Investigator

PIs: Charlie Conroy, Dennis Zaritsky, MMT, Hectochelle The H3 Spectroscopic Survey of the Stellar Halo	200+ nights, 2018-24
PI: Pascal Oesch, JWST, NIRCam FRESCO: The First Reionization Epoch Spectroscopic COmplete Survey	53 hours, 2022-23
PI: Sirio Belli, JWST, NIRSpec 4 The Stellar and Gas Content of Galaxies at Cosmic Noon	16+35.7 hours, 2022-23
PIs: Hakim Atek & John Chisholm, JWST, NIRCam JWST's GLIMPSE: gravitational lensing & NIRCam imaging to probe early galaxy formation and sources of reionization	148 hrs, 2024
PI: Wren Suess, JWST, NIRCam Medium bands, Mega Science: spatially-resolved $R \sim 15$ spectrophotometry of 50,000 sources at $z = 0.3 - 12$	50 hrs, 2023
PI: Anna de Graaff, JWST, NIRSpec A complete census of the rare, extreme and red: a NIRCam-selected extragalactic community survey with JWST/NIRSpec	59 hrs, 2023-24
PI: Jorryt Matthee, JWST, NIRSpec Dissecting Little Red Dots: the connection between early SMBH growth and cosmic reionization	45 hrs, 2024-25
PI: Seiji Fujimoto, JWST, NIRSpec/NIRCam/MIRI Panchromatic characterization of the super-Eddington accretion black ho host, and environment: Epicenter of red dots, mergers, and dusty starbu	
PI: Mengyuan Xiao, JWST, NIRSpec Red Monsters: Kinematics of Two 'Universe Breaking', Ultra-Massive Galaxies in the First Gyr	17 hrs, 2025
PI: Rob Simcoe, JWST, NIRCam grism Emergence of the Baryon Cycle in the First Billion Years	21 hrs, 2025
PI: Vedant Chandra, VLT, FLAMES A Chemical Survey of the Milky Way's Ancient Heart	75 hrs, 2023-24
PI: Charlotte Mason, MMT, Binospec BLAS: The Binospec $Ly\alpha$ Survey	15.5 nights, 2019-21
PI: Sandro Tacchella, MMT, MMIRS Consensus on low-mass galaxies: how do low-mass galaxies grow?	12 nights, 2019-21

Rohan Naidu – CV – Page 3 of 13

PUBLICATION RECORD

26 primary author (first/second author) papers, 2300+ citations, h-index 19, ADS library. 97 total papers, 5600+ citations, h-index 39, ADS library. † marks student-led papers.

Primary Author Papers

- 26. S. Fujimoto & **R.P. Naidu** et al., *GLIMPSE: An Ultra-faint* $\simeq 10^5 M_{\odot}$ *Pop III Galaxy Candidate and First Constraints on the Pop III UV Luminosity Function at* $z \simeq 6-7$, arXiv, submitted to ApJ.
- J. Matthee, R.P. Naidu, G. Brammer, et al., Little Red Dots: An Abundant Population of Faint Active Galactic Nuclei at z ~ 5 Revealed by the EIGER and FRESCO JWST Surveys, ApJ, 963, 129M, 2024.
- †K. Sharpe, R.P. Naidu, C. Conroy, What is Missing from the Local Stellar Halo?, ApJ, 963, 162S, 2024.
- J. Matthee, R.P. Naidu, G. Kotiwale et al., Environmental Evidence for Overly Massive Black Holes in Low Mass Galaxies and a Black Hole - Halo Mass Relation at z ~ 5, arXiv, submitted to ApJ.
- 22. **R.P. Naidu** & J. Matthee et al., All the Little Things in Abell 2744: >1000 Gravitationally Lensed Dwarf Galaxies at z = 0 9 from JWST NIRCam Grism Spectroscopy, arXiv, submitted to OJA.
- 21. [†]V. Chandra, **R.P. Naidu**, C. Conroy, et al., *All-Sky Kinematics of the Distant Halo: The Reflex Response to the LMC*, arXiv, submitted to ApJ.
- [†]V. Chandra, **R.P. Naidu**, C. Conroy, et al., Discovery of the Magellanic Stellar Stream Out to 100 kpc, ApJ, 956, 110C, 2023.
- [†]V. Chandra, **R.P. Naidu**, C. Conroy, et al., Distant Echoes of the Milky Way's Last Major Merger, ApJ, 951, 26C, 2023.
- A. P. Ji, R.P. Naidu, K. Brauer et al., Chemical abundances of the Typhon Stellar Stream, MNRAS, 519, 4467J, 2023.
- 17. **R.P. Naidu**, P. A. Oesch, P. G. van Dokkum et al., *Two Remarkably Luminous Galaxy Candidates at* $z \approx 10 12$ *Revealed by JWST*, ApJ, 940L, 14N, 2022.
- [†]J. J. Han, R.P. Naidu, C. Conroy et al., A Tilt in the Dark Matter Halo of the Galaxy, ApJ, 934, 14, 2022.
- 15. **R.P. Naidu**, A.P. Ji, C. Conroy, et al., Evidence from Disrupted Halo Dwarfs that r-process Enrichment via Neutron Star Mergers is Delayed by > 500 Myrs, ApJL, 926, 32, 2022.
- 14. **R.P. Naidu** & J. Matthee et al., The Synchrony of Production and Escape: Half the Bright $Ly\alpha$ Emitters at $z \approx 2$ have Lyman Continuum Escape Fractions $\approx 50\%$, MNRAS, 510, 4582, 2022.
- 13. J. Matthee & **R.P. Naidu** et al., (*Re*)Solving Reionization with $Ly\alpha$: How Bright $Ly\alpha$ Emitters Account for the $z \approx 2 - 8$ Cosmic Ionizing Background, MNRAS, 512, 5960, 2022.
- R.P. Naidu, C. Conroy, A. Bonaca, et al., Reconstructing the Last Major Merger of the Milky Way with the H3 Survey, ApJ, 923, 92, 2022.
- 11. **R.P. Naidu**, P. A. Oesch, D. Setton et al., Schrodinger's Galaxy Candidate: Puzzlingly Luminous at $z \approx 17$, or Dusty/Quenched at $z \approx 5$?, arXiv, submitted to ApJ.

- R.P. Naidu, C. Conroy, A. Bonaca, et al., Live Fast, Die α-Enhanced: The Mass-Metallicity-α Relation of the Milky Way's Disrupted Dwarf Galaxies, arXiv, submitted to ApJ.
- C. Conroy, R.P. Naidu, N. Garavito-Camargo, et al., All-Sky Dynamical Response of the Galactic Halo to the Magellanic clouds, Nature, 592, 534–536, 2021.
- [†]M.T. Gialluca, R.P. Naidu, A. Bonaca, Velocity Dispersion of the GD-1 Stellar Stream, ApJL, 911, 32, 2021.
- A. Bonaca, R.P. Naidu, C. Conroy, et al., Orbital Clustering Identifies the Origins of Galactic Stellar Streams, ApJL, 909, 26, 2021.
- R.P. Naidu, C. Conroy, A. Bonaca, et al., Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure, ApJ, 901, 48, 2020.
- R.P. Naidu, S. Tacchella, C.A. Mason, et al., Rapid Reionization by the Oligarchs: The Case for Massive, UV-bright, Star-forming Galaxies with High Escape Fractions, ApJ, 892, 109, 2020.
- 4. C.A. Mason, **R.P. Naidu**, S. Tacchella, J.R. Leja, *Model-independent constraints on the hydrogen-ionizing emissivity at* z > 6, MNRAS, 489, 2669, 2019.
- C. Conroy, R.P. Naidu, D. Zaritsky, et al., Resolving the Metallicity Distribution of the Stellar Halo with the H3 Survey, ApJ, 887, 237, 2019.
- R.P. Naidu, B. Forrest, P. A. Oesch, et al., A low Lyman Continuum escape fraction of < 10% for extreme [OIII] emitters in an overdensity at z ~ 3.5, MNRAS, 478, 791, 2018.
- 1. **R.P. Naidu**, P.A. Oesch, N. Reddy, et al., *The HDUV Survey: Six Lyman Continuum Emitter Candidates at z \sim 2 Revealed by HST UV Imaging*, ApJ, 847, 12, 2017.

Contributing Author Papers

- P.A. Oesch, G. Brammer, R.P. Naidu et al., The JWST FRESCO survey: legacy NIRCam/grism spectroscopy and imaging in the two GOODS fields, MNRAS, 525, 2864O, 2023.
- G. Limberg, A.P. Ji, R.P. Naidu et al., Extending the Chemical Reach of the H3 Survey: Detailed Abundances of the Dwarf-galaxy Stellar Stream Wukong/LMS-1, MNRAS, 530, 2512, 2024.
- 69. A. Torralba-Torregrosa, J. Matthee, R.P. Naidu et al. Anatomy of an ionized bubble: NIRCam grism spectroscopy of the z = 6.6 double-peaked Lyman-α emitter COLA1, A&A, 689, A44, 2024.
- K.E. Heintz et al., Strong damped Lyman-α absorption in young star-forming galaxies at redshifts 9 to 11, Science, 384, 890, 2024.
- 67. S. Belli et al., Star formation shut down by multiphase gas outflow in a galaxy at a redshift of 2.45, Nature, 630, 54, 2024.
- 66. M. Xiao et al., Accelerated Formation of Ultra-Massive Galaxies in the First Billion Years, Nature, in press.
- 65. A. de Graaff et al., *Efficient formation of a massive quiescent galaxy at redshift 4.9*, Nature Astronomy, in press.
- 64. K.E. Heintz et al., A massive, neutral gas reservoir permeating a galaxy proto-cluster after the reionization era, Nature, under review.
- 63. A. Adamo et al., The First Billion Years, According to JWST, Nature, under review.

- 62. M. Park et al., Widespread rapid quenching at cosmic noon revealed by JWST deep spectroscopy, ApJ in press.
- 61. K.A. Suess et al., Medium Bands, Mega Science: a JWST/NIRCam Medium-Band Survey of Abell 2744, ApJ in press.
- 60. R.A. Meyer et al., JWST FRESCO: A comprehensive census of $H\beta + [O III]$ emitters at 6.8 < z < 9.0 in the GOODS fields, MNRAS in press.
- 59. R. Bordoloi et al., *EIGER IV: The cool* 10⁴K circumgalactic environment of high-z galaxies, ApJ in press.
- J.E. Greene et al., UNCOVER Spectroscopy Confirms the Surprising Ubiquity of AGN in Red Sources at z > 5, ApJ, 964, 39, 2024.
- 57. X. Shen et al., Early galaxies and early dark energy: a unified solution to the hubble tension and puzzles of massive bright galaxies revealed by JWST, MNRAS, 533, 3923, 2024.
- B. Wang et al., RUBIES: Evolved Stellar Populations with Extended Formation Histories at z 7-8, ApJL, 969, L13, 2024.
- Y. Li et al., No Top-heavy Stellar Initial Mass Function Needed: The Ionizing Radiation of GS9422, ApJL, 969, L5, 2024.
- 54. E. Pizzati et al., A unified model for the clustering of quasars and galaxies at $z \approx 6$, MNRAS, 534, 3155, 2024.
- A-C. Eilers et al., EIGER. VI. The Correlation Function, Host Halo Mass, and Duty Cycle of Luminous Quasars at z > 6, ApJ, 974, 275, 2024.
- 52. X. Ou et al., The Rise of the r-process in the Gaia-Sausage/Enceladus Dwarf Galaxy, ApJ, 974, 232, 2024.
- 51. I. Shivaei et al., A new census of dust and polycyclic aromatic hydrocarbons at z = 0.7 2 with JWST MIRI, A&A, 690, A89, 2024.
- C. Conroy et al., Detection of Accretion Shelves Out to the Virial Radius of a Low-Mass Galaxy with JWST, ApJ, 968, 129C, 2024.
- J. Matharu et al., A first look at spatially resolved star formation at 4.8 < z < 6.5 with JWST FRESCO NIRCam slitless spectroscopy, A&A, 690, A64, 2024.
- 48. A. Weibel et al., Galaxy build-up in the first 1.5 Gyr of cosmic history: insights from the stellar mass function at $z \approx 4 9$, MNRAS, 533, 1808, 2024.
- C. Neufeld et al., FRESCO: The Paschen-α Star-forming Sequence at Cosmic Noon, ApJ, 972, 156, 2024.
- 46. V. Chandra et al., The Three-phase Evolution of the Milky Way, ApJ, 972, 112, 2024.
- 45. J. Kerutt et al., Lyman continuum leaker candidates at $z \sim 3-4$ in the HDUV based on a spectroscopic sample of MUSE LAEs, A&A, 684, A42, 2024.
- 44. J.S. Speagle et al., Mapping the Milky Way in 5D with 170 Million Stars, ApJ, 970, 121, 2024.
- 43. R. Gottumukkala et al., Unveiling the hidden Universe with JWST: dust-obscured galaxies at $z \sim 3-8$, MNRAS, 530, 966, 2024.
- M. Yue et al., EIGER. V. Characterizing the Host Galaxies of Luminous Quasars at z > 6, ApJ, 966, 176, 2024.
- 41. R.A. Meyer et al., NOEMA reveals the true nature of luminous red JWST z > 10 galaxy candidates, A&A, 681, L3, 2024.

- R.L. Davies et al., JWST reveals widespread AGN-driven neutral gas outflows in massive z ~ 2 galaxies, MNRAS, 528, 4976, 2024.
- L. Bugiani et al., AGN Feedback in Quiescent Galaxies at Cosmic Noon Traced by Ionized Gas Emission, arXiv, submitted to ApJ.
- B. Wang et al., RUBIES: JWST/NIRSpec Confirmation of an IR-luminous, Broad-line Little Red Dot, arXiv, submitted to ApJ.
- 37. A. Covelo-Paz et al., An H α view of galaxy build-up in the first 2 Gyr: luminosity functions at $z \sim 4 6.5$ from NIRCam/grism spectroscopy, arXiv, submitted to MNRAS.
- 36. A. de Graaff et al., *RUBIES: a complete census of the bright and red distant Universe with JWST/NIRSpec*, arXiv, submitted to ApJ.
- 35. T. Woody et al., The Rapid Formation of the Metal Poor Milky Way, arXiv, submitted to ApJ.
- A. Weibel et al., RUBIES Reveals a Massive Quiescent Galaxy at z=7.3, arXiv, submitted to ApJ.
- 33. M.A. Marshall et al., GA-NIFS & EIGER: A merging quasar host at z=7 with an overmassive black hole, arXiv, submitted to ApJ.
- 32. A. Claeyssens et al., Tracing star formation across cosmic time at tens of parsec-scales in the lensing cluster field Abell 2744, arXiv, submitted to A&A.
- K.E. Heintz et al., The JWST-PRIMAL Legacy Survey: A JWST/NIRSpec reference sample for the physical properties and Lyman-α absorption and emission of ~ 500 galaxies at z = 5.5 - 13.4, arXiv, submitted to A&A.
- 30. E.J. Nelson et al., *FRESCO: An extended, massive, rapidly rotating galaxy at* z = 5.3, arXiv, submitted to ApJ.
- 29. T. Herard-Demanche et al., Mapping dusty galaxy growth at z > 5 with FRESCO: Detection of $H\alpha$ in submm galaxy HDF850.1 and the surrounding overdense structures, arXiv, submitted to MNRAS.
- I. Labbe et al., UNCOVER: Candidate Red Active Galactic Nuclei at 3 < z < 7 with JWST and ALMA, arXiv, submitted to ApJ.
- 27. C. Conroy et al., Birth of the Galactic Disk Revealed by the H3 Survey, arXiv, submitted to OJA.
- 26. K. El-Badry et al., The fastest stars in the Galaxy, OJA, 6, 28, 2023.
- 25. J. Johnson et al., Dwarf galaxy archaeology from chemical abundances and star-formation histories, MNRAS, 526, 5084J, 2023.
- 24. R.J. Bouwens et al., Evolution of the UV LF from $z \sim 15$ to $z \sim 8$ using new JWST NIRCam medium-band observations over the HUDF/XDF, MNRAS, 523, 1036B, 2023.
- 23. R.J. Bouwens et al., UV luminosity density results at z > 8 from the first JWST/NIRCam fields: limitations of early data sets and the need for spectroscopy, MNRAS, 523, 1009B, 2023.
- 22. L. Barrufet et al., Unveiling the Nature of Infrared Bright, Optically Dark Galaxies with Early JWST Data, MNRAS, 522, 449B, 2023.
- 21. H. Rix et al., The Poor Old Heart of the Milky Way, ApJ, 941, 45R, 2022.
- V. Chandra et al., A Ghost in Boötes: The Least Luminous Disrupted Dwarf Galaxy, ApJ, 940, 127C, 2022.
- 19. J. J. Han et al., The Stellar Halo of the Galaxy is Tilted & Doubly Broken, AJ, 164, 249, 2022.

- M. Hasheminia et al., No Evolution in the Half-mass Radius of Milky Way-type Galaxies over the Last 10 Gyr, ApJ, 932, 23, 2022.
- D. Schaerer et al., First look with JWST spectroscopy: Resemblance among z ~ 8 galaxies and local analogs, A&A, 665, L4, 2022.
- 16. E. Leonova et al., The prevalence of galaxy overdensities around UV-luminous Lyman α emitters in the Epoch of Reionization, MNRAS, 515, 5790, 2022.
- 15. J. Shen et al., The Mass of the Milky Way from the H3 Survey, ApJ, 925, 1S, 2022.
- Y. Qin et al., Dark-ages Reionization and Galaxy Formation Simulation XX. The Lyα IGM transmission properties and environment of bright galaxies during the Epoch of Reionization, MNRAS, 510, 3858, 2022.
- 13. J. Matthee et al., The X-SHOOTER Lyman- α survey at z = 2 (XLS-z2) I: What makes a galaxy a Ly α emitter?, MNRAS, 505, 1382M, 2021.
- R. Bouwens et al., New Determinations of the UV Luminosity Functions from z ~ 9 to z ~ 2 Show a Remarkable Consistency with Halo Growth and a Constant Star Formation Efficiency, AJ, 162, 47B, 2021.
- 11. C. Carter et al., Ancient Very Metal-poor Stars Associated with the Galactic Disk in the H3 Survey, ApJ, 908, 208, 2021.
- 10. D. Zaritsky et al., Discovery of Magellanic Stellar Debris in the H3 Survey, ApJL, 905, 3, 2020.
- B.D. Johnson et al., A Diffuse Metal-poor Component of the Sagittarius Stream Revealed by the H3 Survey, ApJ, 900, 103, 2020.
- 8. A. Bonaca et al., Timing the Early Assembly of the Milky Way with the H3 Survey, ApJL, 897, 18, 2020.
- 7. A. Bonaca et al., High-resolution Spectroscopy of the GD-1 Stellar Stream Localizes the Perturber near the Orbital Plane of Sagittarius, ApJL, 892, 37, 2020.
- D. Zaritsky et al., A Lower Limit on the Mass of Our Galaxy from the H3 Survey, ApJ, 888, 114, 2020.
- 5. C. Conroy et al., Mapping the Stellar Halo with the H3 Spectroscopic Survey, ApJ, 883, 107, 2019.
- 4. X. Fan et al., The Discovery of a Gravitationally Lensed Quasar at z = 6.51, ApJL, 870, 11, 2019.
- 3. L.H. Jones et al., $z \sim 2.5 3$ Ionizers in the GOODS-N Field, ApJ, 862, 142, 2018.
- 2. P.A. Oesch et al., HDUV: The Hubble Deep UV Legacy Survey, ApJS, 237, 12, 2018.
- C. Conroy et al., They Might Be Giants: An Efficient Color-based Selection of Red Giant Stars, ApJL, 861, 16, 2018.

Select Coverage in Popular Media

- On JWST work (Luminous z > 10 Galaxies, Little Red Dots, Early Black Holes)
 - The Biggest Discoveries in Physics in 2023, Quanta
 - Early dark energy could resolve cosmology's two biggest puzzles, MIT News
 - JWST may have found the most ancient starlight we've ever seen—and it's only the beginning, The Atlantic

- JWST's First Glimpses of Early Galaxies Could Break Cosmology, Scientific American cover story
- Standard Model of Cosmology Survives a Telescope's Surprising Finds, Quanta
- JWST Discovers a Galaxy That Could Break Physics, 1.5 million views on Secrets of The Universe YouTube channel
- On Milky Way work (Farthest Surveys of the Galactic Halo out to > 100 kpc)
 - Our Milky Way Galaxy's Most Recent Major Collision, SciTech Daily
 - A mysterious river of gas flowing into the Milky Way has stars inside after all, Space.com
 - Astronomers Find Stars Cast Away from Galactic Neighbors, Sky & Telescope
 - Stars found hidden in huge cloud wrapped around the Milky Way, New Scientist
 - Astronomers chart ocean of dark matter swirling outside the Milky Way, Live Science
 - Dark matter could be powering a galaxy that orbits the Milky Way, SYFY

INVITED TALKS

Toledo, Galaxy Origins with JWST	High- z Review Talk f	for Conference, 2025
Ascona, Galaxy Evolution in the JWST Era	High- z Review Talk f	for Conference, 2024
ISSI Bern, The Early Universe According to JWST	Re	eview Meeting, 2024
Yale, All the Little Things: Dwarf Galaxies from $z \approx$	0 - 9 Tins	sley Workshop, 2024
U. of Florida, Into the First Billion Years with JWS	Т	Colloquium, 2025
Hawaii, Into the First Billion Years with JWST		Colloquium, 2024
Brandeis, Into the First Billion Years with JWST		Colloquium, 2024
Carnegie, Into the First Billion Years with JWST		Colloquium, 2024
Caltech, The First Glimpse of the The First Galaxie.	s with JWST	Colloquium, 2023
Chicago, The First Glimpse of the The First Galaxie	es with JWST	Colloquium, 2023
Harvard, The First Glimpse of the The First Galaxie	es with JWST	Colloquium, 2023
MIT, The First Glimpse of the The First Galaxies w	ith JWST	Colloquium, 2023
Yale, The First Glimpse of the The First Galaxies we	ith JWST	Colloquium, 2023
UTRGV, The First Glimpse of the The First Galaxie	es with JWST	Colloquium, 2023
Carnegie, The First Glimpse of the The First Galaxi	es with JWST	Colloquium, 2022
ANU, The First Glimpse of the The First Galaxies w	with JWST	Colloquium, 2022
UMass Amherst, The First Glimpse of the The First	Galaxies with JWST	Colloquium, 2022
Minnesota, Unraveling the Galactic Halo with the H_{*}^{a}	3 Survey	Colloquium, 2020
Tufts, All the Little Things: Dwarf Galaxies from $z \in$	$\approx 0 - 9$	Seminar, 2024
STScI, All the Little Things		Seminar, 2024
IIT Hyderabad, The First Glimpse of the The First	Galaxies with JWST	Seminar, 2023
MIT, The First Glimpse of the The First Galaxies w	ith JWST	Seminar, 2023

Rohan Naidu - CV - Page 9 of 13

Tufts, The First Glimpse of the The First Galaxies with JWST	Seminar, 2022
Sao Paulo, The First Glimpse of the The First Galaxies with JWS	Seminar, 2022
U. of Washington, The First Glimpse of the The First Galaxies w	ith JWST Seminar, 2022
CfA, (Very) Early Results from JWST	Seminar, 2022
DAWN, Solving Reionization with Resolved $Ly\alpha$	Seminar, 2022
TIFR, Solving Reionization with Resolved $Ly\alpha$	Seminar, 2022
Max Planck Institute, Heidelberg, Reconstructing the Last Major	Merger Seminar, 202
Chicago, Unraveling the Galactic Halo with the H3 Survey	Seminar, 2021
UC Santa Cruz, Unraveling the Galactic Halo with the H3 Survey	Seminar, 2021
Carnegie, Unraveling the Galactic Halo with the H3 Survey	Seminar, 2021
NYU, Unraveling the Galactic Halo with the H3 Survey	Seminar, 2021
CfA, Solving Reionization with Resolved $Ly\alpha$	Seminar, 2021
Surrey, Unraveling the Galactic Halo	Astrophysics Seminar, 202
UT Austin, Solving Reionization with Resolved $Ly\alpha$	Extragalactic Seminar, 202
Cambridge, Reconstructing the Last Major Merger	Seminar, 2021
Tufts, Rapid Reionization by the Oligarchs	Astronomy seminar, 2021
AIP Potsdam, Reconstructing the Last Major Merger	Milky Way seminar, 202
IAS, Princeton, Unraveling the Galactic Halo with the H3 Survey	Astro Coffee, 2020
Flatiron CCA, Reconstructing the Last Major Merger	Dynamics meeting, 2020
Arizona, Unraveling the Galactic Halo with the H3 Survey	Galaxy Crawl seminar, 2020
Max Planck Institute, Heidelberg, Unraveling the Galactic Halo	Galaxy Coffee, 2020
Harvard, Connecting the Milky Way to High-z Galaxy Evolution	HiGEM seminar, 2020
Arizona, Rapid Reionization by the Oligarchs	EURECA seminar, 2020
ESO Chile, Rapid Reionization by the Oligarchs	Thirty Minutes Talk, 2019

CONFERENCE TALKS

Galaxy Origins in the JWST Era, Toledo, Invited Review	2025
Observing & Simulating Galaxy Evolution in the Era of JWST, Ascona, <i>Invited Review</i>	2024
Cosmic Odysseys, Crete, Seeking the Photons for Reionization	2024
The Early Universe according to JWST, ISSI Bern Seeking the Photons for Reionization	2024
Reionization & Cosmic Dawn, Berkeley Solving Reionization with Resolved Ly α	2022
SAZERAC2, Double Bubble Lyman Trouble: Indirect tracers of LyC for the JWST Era	2021
Streams21, The Accretion Origins of Stellar Streams	2021
AAS Winter Meeting, Unraveling the Galactic Halo with the H3 Survey	2021
Harvard-Heidelberg Star-Formation Meeting, Starburst (Sgrburst) in our Backyard	2020
SAZERAC, Rapid Reionization by the Oligarchs	2020
Early Galaxy Evolution in the ALMA & JWST Era, Rapid Reionization by the Oligarchs	2019
Escape of Lyman Radiation, OAC Crete, LyC at $z \approx 2-3$ with the HDUV Survey	2018

Rohan Naidu $-\,\mathrm{CV}$ – Page 10 of 13

TEACHING & ADVISING

Teaching		
Head Teaching Fellow, <i>Stellar & Planetary Astronomy</i> , Harvard University Instructor: Prof. John Johnson	Spring 2021	
Teaching Fellow, <i>Galaxies & Cosmology</i> , Harvard University Instructor: Prof. Charlie Conroy	Fall 2019	
Teaching Assistant, Intro. to Observational Astronomy, Yale-NUS College Instructor: Prof. Bryan Penprase	Spring 2017	
Advising		
Kate Leonova (Amsterdam) adviser on ongoing reionization projects with JWST; two papers in prep.	2022-	
Vedant Chandra (Harvard Astronomy) adviser with Prof. Charlie Conroy on ongoing halo survey; three papers published	2021-	
Katherine Sharpe (Harvard College \rightarrow UC Berkeley) advised with Prof. Charlie Conroy on one published paper and Harvard Jr. Thesis	2021-23	
Steve Diaz (UMass Lowell, SAO Latino Initiatives Program) mentored on all aspects of research life during 3 month internship	2021	
Megan Gialluca (Northern Arizona University, SAO REU student) advised with Dr. Ana Bonaca on one published paper	2020-21	
Lavonna Mark (Yale-NUS College) advised on PhD applications & interviews, Stanford PhD on prize fellowship	2020-21	
Jerrick Wee (Yale-NUS College) mentored on all aspects of astronomy research, published two papers	2017-18	

DIVERSITY, EQUITY, INCLUSION

- Lead Member, NASA Hubble Fellowship DEI Group (2023-)
 - One of nine lead members of DEI group focused on diversifying the fellowship and using the program's privileged position to bring positive change in the community.
 - One of two fellows with overall responsibility for the annual postdoc fellowship application feedback program (e.g., recruiting team of current/former fellows, matching students with suitable mentors, publicity).
 - Served ≈ 75 students, primarily from under-served backgrounds, with feedback on their fellowship applications.
- Survey Representative, Harvard Graduate Student Mental Health Survey (2021)
 - One of five Astronomy Dept. point-persons for the Harvard-wide initiative.
 - Coordinated 95% participation from department and helped disseminate results.
- Python instructor & STEM Mentor, SAO's Latino Initiatives Program (2021)
 - Three month program for students from communities under-represented in STEM.

- Introduced students to python with a focus on scientific computing.
- Held weekly one-to-one mentoring meetings.
- Volunteer, Harvard Banneker Institute summer program (2018, 2020)
 - Ten week research-study experience to prepare students of color for graduate school.
 - Held weekly office hours on all aspects of research, provided catch-all programming assistance.
- Department Point-Person & Volunteer, Harvard Graduate Students Union (2017-19)
 - Fair pay, affordable healthcare, and protection from abuse are core goals of the union.
 - Canvassed STEM departments (≈ 200 calls + in-person conversations) and international students (e.g., Harvard Crimson Op-Ed) for union formation election.
 - Organized action with a focus on international student issues (e.g., Muslim ban, visa-related travel reimbursements, pandemic pay).
- Science communication and outreach across diverse communities
 - Enthusiastic public speaker committed to making astronomy accessible to everyone.
 - Recent engagements include: Ask MIT! series for school students (what does space really look like?), Astronomy on Tap Los Angeles (*The Milky Way: A Galaxy of Immigrants*), Kainaat Astronomy (JWST results on first galaxies in the Urdu language).

PROFESSIONAL SERVICE

- Panelist for an NSF review (2025)
- Panelist on the Hubble Space Telescope time allocation committee (2024)
- Subject-matter expert reviewer for a NASA peer review (2024)
- Subject-matter expert reviewer for a NASA time allocation committee $\left(2024\right)$
- Scientific & Local Organizing Committees, First Light Conference, Boston (2023)
 - One of five SOC members, and one of six LOC members for > 150 person conference focused on early Universe results from the first year of JWST.
 - Designed scientific program, organized logistics, coordinated social events, assisted with overall responsibilities for smooth conduct of the event.
- Journal referee for the Astrophysical Journal (ApJ, ApJL), Monthly Notices of the Royal Astronomical Society (MNRAS), and Astronomy & Astrophysics (A&A, A&AL)
- Chief Coordinator, Harvard Astronomy's Recruitment Week (2019)
 - One of two grad students in-charge of every aspect of recruitment (e.g., designing the overall program, travel/restaurant arrangements, liaising with faculty/admin).
 - Developed new programming (e.g., closed-door student panel with anonymous questions) and produced a detailed report for faculty identifying areas of weakness (e.g., CfA web portals) that spurred action.

OTHER INTERESTS

- Quizzing/Trivia/Quiz-bowl
 - Won several national & international events youngest gold medalist at the Asia-Pacific Quizzing Championships and four-time national champion (Singapore), one-time international champion of the Tata Crucible campus quiz (among the world's largest university tournaments with 38 cities, 5000+ teams).
 - Wrote/presented 1000+ questions for TV shows, pub quizzes, and community events.
- Poetry
 - Published in journals including Helter Skelter Magazine's New Indian Writing, the Quarterly Literary Review Singapore, and Softblow. Shortlisted/longlisted for prizes including the Poetry Society of India's All-India Prize, University of Canberra's International Poetry Prize, and the Wingword Poetry Prize.
- Data-science for social good
 - Led the team behind the viral electoral literacy website, electionaire.info (>500,000 unique hits, > 10% of Singapore's population). Conceptualized the project, recruited team, oversaw research on stances of political parties, handled press.
 - Data miner for studies focused on domestic maids' rights in Singapore. Studies based on these data revealed live-in domestic maids from the Philippines, Indonesia and India who work in 1-of-4 households often enter contracts with zero off days per month.